Abstract
Silicon nanowires are prepared by the method of the two‐step metal‐assisted wet chemical etching. We analyzed the structure of solid, rough, and porous nanowire surfaces of boron‐doped silicon substrates with resistivities of ρ > 1000 Ωcm, ρ = 14–23 Ωcm, and ρ < 0.01 Ωcm by scanning electron microscopy and nitrogen gas adsorption. Silicon nanowires prepared from highly doped silicon reveal mesopores on their surface. However, we found a limit for pore formation. Pores were only formed by etching below a critical H2O2 concentration ( M). Furthermore, we determined the pore size distribution dependent on the etching parameters and characterized the morphology of the pores on the nanowire surface. The pores are in the regime of small mesopores with a mean diameter of 9–13 nm. Crystal and surface structure of individual mesoporous nanowires were investigated by transmission electron microscopy. The vibrational properties of nanowire ensembles were investigated by Raman spectroscopy. Heavily boron‐doped silicon nanowires are highly porous and the remaining single crystalline silicon nanoscale mesh leads to a redshift and a strong asymmetric line broadening for Raman scattering by optical phonons at 520 cm−1. This redshift, λSi bulk = 520 cm−1 →λSi nanowire = 512 cm−1, hints to a phonon confinement in mesoporous single crystalline silicon nanowires.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.