Abstract

Abstract The growth of zinc oxide (ZnO) microrods on porous ceramic substrates by mild hydrothermal process was studied. One-dimensional ZnO microrods were grown on ZnO nanoparticle seeded substrates by using equimolar concentration of zinc nitrate and hexamethylenetetramine at temperatures lower than 100 °C. We found that the growth of ZnO microrods on alumina and diatomite substrates were affected due to hydrolysis of substrate surfaces. Stunted ZnO microrod growth on γ-alumina and diatomite substrates were attributed to arise due to the degradation of hexamine molecules in the growth solution. Adjusting the pH prior to the growth of ZnO microrods on both alumina and diatomite lead to the growth of ZnO microrods similar to what is observed on flat glass substrates. Cordierite does not hydrolyze easily and hence ZnO microrods with aspect ratio as high as 24, were obtained without any pH control of the growth solution. Copper nanoparticles deposited on ZnO microrods were utilized as a catalyst for methanol steam reforming and about 14% hydrogen yield was obtained with almost 90% methanol conversion at reforming temperature of 350 °C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call