Abstract

Superhydrophilic functional materials have been found to be of great value for a variety of practical applications in recent years. In this paper, zinc oxide (ZnO) microrod films have been directly synthesized on a large-area zinc substrate via a simple solution method. Morphological and structural observation and crystallinity of the grown products were carried out using scanning electron microscopy, X-ray diffraction, energy dispersive spectrometer, transmission electron microscopy, ultraviolet (UV)–vis diffuse reflectance spectroscopy and photoluminescence (PL) spectroscopy. The influence of reaction time on the size and shapes of the as-prepared ZnO samples was studied. It was found that superhydrophilic ZnO films at reaction time of 20h were made up of uniform pure ZnO microrods with 600nm in average diameter and 6μm in length. Room-temperature PL spectra of the ZnO products showed a UV emission and a broad green band. Photocatalytic performance and sample stability were studied. Under UV light irradiation over 95% of methylene blue was degraded by ZnO microrod films in 4h, ZnO microrod film can be easily separated from the solution, and no observable performance degradation was observed after 5cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call