Abstract
Phase-change random access memory (PCRAM) is enabled by a large resistance contrast between amorphous and crystalline phases upon reversible switching between the two states. Thus, great efforts have been devoted to identifying potential phase-change materials (PCMs) with large electrical contrast to realize a more accurate reading operation. In contrast, although the truly dominant resistance in a scaled PCRAM cell is contact resistance, less attention has been paid toward the investigation of the contact property between PCMs and electrode metals. This study aims to propose a non-bulk-resistance-dominant PCRAM whose resistance is modulated only by contact. The contact-resistance-dominated PCM exploited here is N-doped Cr2Ge2Te6 (NCrGT), which exhibits almost no electrical resistivity difference between the two phases but exhibits a typical switching behavior involving a three-order-of-magnitude SET/RESET resistance ratio owing to its large contact resistance contrast. The conduction mechanism was discussed on the basis of current–voltage characteristics of the interface between the NCrGT and the W electrode.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have