Abstract
The charge transport mechanism between 1,8-octanedithiol (ODT, C(8)H(16)S(2)H(2)) and platinum and gold electrodes is studied by breaking bonds between single ODT molecules and atomic metal junctions using conductive probe atomic force microscopy. Histograms of conductance values show peaks that are obscured by background processes that differ from the metal-molecule-metal conduction path of interest. We introduce a new method to reduce greatly such backgrounds by dividing by a 1-octanethiol (OMT, C(8)H(17)SH) reference histogram, without data selection. The method reveals three series of conductance values for both platinum and gold contacts, which we associate with geometrically different configurations between thiol and metal atoms. The ordering of conductance values, Pt-ODT-Pt > Pt-ODT-Au> Au-ODT-Au, is consistent with a relative dependence on both the number of electron channels and the density of states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.