Abstract

There is escalating interest in composting of post-consumption food waste (PCFW) to recycle nutrients and mitigate pollution by inappropriate disposal. The present study aimed to evaluate the performance of bioaugmentation to composting of PCFW, which is in difficulties caused by high sugar, protein and gross lipid content. Inoculation of the microbial consortium effectively induced rapid temperature and pH rising, which led to OM reduction rate at 25.11 % and maturity at 150 % in terms of Germination Index value. EEMs-FRI showed that humification was accelerated in the thermophilic stage and further improved in the mature stage. Bacterial community analysis revealed that microbial inoculant ameliorated acidification, and expedited temperature and pH rising in the initial stage, which in turn accelerated bacteria community succession. The abundance of Actinobacteria was much higher in the thermophilic and mature stage in T2 treatment than in T1, which might explain rapid organic degradation. High temperature enriched thermophilic genera (Thermobifida, Compostibacillus, Neobacillus), and Pseudonocardia and Actinoplanes were enriched in the mature stage, which correlated to effective degradation of organic matter, humification and maturity. Temperature and pH mainly motivated bacterial succession. The results suggest that bioaugmentation is a favorable approach for efficient composting of PCFW.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.