Abstract

This study examined bacterial dynamics in response to lime addition to enhance kitchen waste composting using modular network analysis. Bacterial communities could be separated into three meta-modules corresponding to the mesophilic, thermophilic, and mature stage of composting. Lime addition at 1% (wet weight) suppressed acidogens and denitrifiers (e.g. Lactobacillus and Acinetobacter) at the mesophilic stage to reduce greenhouse gas emissions. The matrix pH and temperature were also increased by lime addition via hydrogen reaction to favor bacterial growth and activity. Thus, thermophilic bacteria (e.g. Thermoactinomycetaceae and Planifilum) were enriched with lime addition to facilitate lignocellulose biodegradation for humus formation at the thermophilic stage. Further lime addition to 1.5% reduced ammonia emission at the thermophilic stage via chemical fixation. Moreover, lime inhibited denitrifiers but proliferated nitrifiers at the mature stage to decrease nitrous oxide emission and enhance nitrate content, respectively. As such, lime addition improved both biotic and abiotic composting performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.