Abstract

Li-O2 batteries have an extremely high theoretical specific energy; however, the large charge overpotential and highly reactive singlet oxygen (1O2) are two major obstacles. Porphyrin as a special kind of macrocyclic conjugated aromatic system exhibits excellent redox activity, which can be optimized by introducing a center metal atom. Herein, 5,10,15,20-tetrakis(4-aminophenyl)-porphyrin (TAPP) and 5,10,15,20-tetrakis(4-aminophenyl)-porphyrin-Co(II) (Co-TAP) are applied as effective redox mediators for Li-O2 batteries. The synergistic effects of a center metal atom and organic ligand make Co-TAP more favorable for oxygen reduction and evolution. To understand the fundamental reaction mechanisms with or without TAPP or Co-TAP, the discharge/charge processes and the parasitic reactions have been comprehensively studied. The results reveal that TAPP affects the formation mechanism of Li2O2, while Co-TAP transforms the main discharge product into LiOH without adding extra water. Co-TAP-containing batteries operated via LiOH chemistry completely eradicate 1O2 and significantly alleviate the parasitic reactions associated with 1O2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.