Abstract

Epithermal neutron beams are under development in a number of locations in the U.S. and abroad. The increased penetration in tissue provided by these neurons should circumvent problems associated with the rapid attenuation of thermal neutron beams encountered in previous clinical trials of neutron capture therapy (NCT). Physical and radiobiological experiments with two "intermediate energy" or "epithermal" beams have been reported. A comparison is made here between the 24-keV iron-filtered beam at Harwell, England, and the broad-spectrum Al2 O3 moderated beam at the Brookhaven Medical Research Reactor (BMRR). In addition, parameters which are relevant for NCT, and which are best suited for evaluation and comparison of beams, are discussed. Particular attention is paid to the mean neutron energy which can be tolerated without significant reduction of therapeutic gain (TG), where TG is the ratio of tumor dose to maximum normal tissue dose. It is suggested that the simplest and most meaningful parameters for comparison of beam intensity and purity are the epithermal neutron fluence rate, and the fast neutron dose per epithermal neutron (4.2 X 10(-11) rad/neutron for the broad-spectrum beam and 29 X 10(-11) rad/neutron for the 24-keV beam). While the Al2O3 beam is close to optimal, the 24-keV beam produces a significant fast neutron dose which results in a lower TG.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.