Abstract

Perfusion magnetic resonance imaging (MRI)s plays a central role in the diagnosis and monitoring of neurovascular or neurooncological disease. However, conventional processing techniques are limited in their ability to capture relevant characteristics of the perfusion dynamics and suffer from a lack ofstandardization. We propose a physics-informed deep learning framework which is capable of analyzing dynamic susceptibility contrast perfusion MRI data and recovering the dynamic tissue response with highaccuracy. The framework uses physics-informed neural networks (PINNs) to learn the voxel-wise TRF, which represents the dynamic response of the local vascular network to the contrast agent bolus. The network output is stabilized by total variation and elastic net regularization. Parameter maps of normalized cerebral blood flow (nCBF) and volume (nCBV) are then calculated from the predicted residue functions. The results are validated using extensive comparisons to values derived by conventional Tikhonov-regularized singular value decomposition (TiSVD), in silico simulations and an in vivo dataset of perfusion MRI exams of patients with high-gradegliomas. The simulation results demonstrate that PINN-derived residue functions show a high concordance with the true functions and that the calculated values of nCBF and nCBV converge towards the true values for higher contrast-to-noise ratios. In the in vivo dataset, we find high correlations between conventionally derived and PINN-predicted perfusion parameters (Pearson's rho for nCBF: and nCBV: ) and very high indices of image similarity (structural similarity index for nCBF: and for nCBV: ). PINNs can be used to analyze perfusion MRI data and stably recover the response functions of the local vasculature with highaccuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.