Abstract
Strong Ground Motions have a significant impact on structural analysis and design. Seismic evaluation is deemed necessary for the quality, reliability, and feasibility of existing and developing structures. Earthquakes are even more disastrous when a mainshock is succeeded and preceded by aftershocks of higher magnitude. Most of the time, these aftershocks are ignored during analysis. In the last few decades, steel buildings have been crucial to the construction sector. On the other hand, RCC frames are commonly designed structures for commercial purposes and cost-effectiveness. IS 1893 (Part:1)-2002 Criteria for Earthquake Resistant Design of Structures and IS 13920-2016 Ductile Detailing of RC Structures Subjected to Seismic Reactions are majorly used for Seismic Analysis. Steel bracings in the structural system increase the ductility and stiffness of the frame structure. That can be arranged in a variety of ways, such as X, diagonally, alternatively, V, inverted V, K, etc. Cross bracings are used in this paper for the design of a typical multi-story (G+9) semi-rigid steel frame and a typical RCC frame is designed of the same dimensions. Both the frames are modelled and compared using ETABS software and a static nonlinear Time History analysis is executed to examine the performance of both the frames under the Mainshock and Aftershock of Chamoli earthquake. The Mainshock and Aftershock results of the Chamoli earthquake are extracted from the Centre for Engineering Strong Motion Research Ground Motion Database. Base shear, joint displacement, kinetic energy, and story displacement are a few of the variables of Time History Analysis that affect how well a building performs during mainshock and aftershock earthquakes. When analysing the outcomes, it is important to take into account that each of these factors significantly affects how a building responds to seismic loads.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have