Abstract
We consider multiwindow Gabor systems (G N ; a, b) with N compactly supported windows and rational sampling density N/ab. We give another set of necessary and sufficient conditions for two multiwindow Gabor systems to form a pair of dual frames in addition to the Zibulski---Zeevi and Janssen conditions. Our conditions come from the back transform of Zibulski---Zeevi condition to the time domain but are more informative to construct window functions. For example, the masks satisfying unitary extension principle (UEP) condition generate a tight Gabor system when restricted on [0, 2] with a?=?1 and b?=?1. As another application, we show that a multiwindow Gabor system (G N ; 1, 1) forms an orthonormal basis if and only if it has only one window (N?=?1) which is a sum of characteristic functions whose supports `essentially' form a Lebesgue measurable partition of the unit interval. Our criteria also provide a rich family of multiwindow dual Gabor frames and multiwindow tight Gabor frames for the particular choices of lattice parameters, number and support of the windows. (Section 4)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.