Abstract

AbstractFor the iterative decoupling of elliptic–parabolic problems such as poroelasticity, we introduce time discretization schemes up to order five based on the backward differentiation formulae. Its analysis combines techniques known from fixed-point iterations with the convergence analysis of the temporal discretization. As the main result, we show that the convergence depends on the interplay between the time step size and the parameters for the contraction of the iterative scheme. Moreover, this connection is quantified explicitly, which allows for balancing the single error components. Several numerical experiments illustrate and validate the theoretical results, including a three-dimensional example from biomechanics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.