Abstract
This paper is concerned with near-optimal approximation of a given univariate function with elements of a polynomially enriched wavelet frame, a so-called quarklet frame. Inspired by hp-approximation techniques of Binev, we use the underlying tree structure of the frame elements to derive an adaptive algorithm that, under standard assumptions concerning the local errors, can be used to create approximations with an error close to the best tree approximation error for a given cardinality. We support our findings by numerical experiments demonstrating that this approach can be used to achieve inverse-exponential convergence rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.