Abstract

Let \(\Lambda=\mathcal{K}\times\mathcal{L}\) be a full rank time-frequency lattice in ℝd×ℝd. In this note we first prove that any dual Gabor frame pair for a Λ-shift invariant subspace M can be dilated to a dual Gabor frame pair for the whole space L2(ℝd) when the volume v(Λ) of the lattice Λ satisfies the condition v(Λ)≤1, and to a dual Gabor Riesz basis pair for a Λ-shift invariant subspace containing M when v(Λ)>1. This generalizes the dilation result in Gabardo and Han (J. Fourier Anal. Appl. 7:419–433, [2001]) to both higher dimensions and dual subspace Gabor frame pairs. Secondly, for any fixed positive integer N, we investigate the problem whether any Bessel–Gabor family G(g,Λ) can be completed to a tight Gabor (multi-)frame G(g,Λ)∪(∪j=1NG(gj,Λ)) for L2(ℝd). We show that this is true whenever v(Λ)≤N. In particular, when v(Λ)≤1, any Bessel–Gabor system is a subset of a tight Gabor frame G(g,Λ)∪G(h,Λ) for L2(ℝd). Related results for affine systems are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.