Abstract

We introduce a novel heuristic designed to address the supply chain inventory management problem in the context of a two-echelon divergent supply chain. The proposed heuristic advances the current state-of-the-art by combining deep reinforcement learning with multi-stage stochastic programming. In particular, deep reinforcement learning is employed to determine the number of batches to produce, while multi-stage stochastic programming is applied to make shipping decisions. To support further research, we release a publicly available software environment that simulates a wide range of two-echelon divergent supply chain settings, allowing the manipulation of various parameter values, including those associated with seasonal demands. We then present a comprehensive set of numerical experiments considering constraints on production and warehouse capacities under fixed and variable logistic costs. The results demonstrate that the proposed heuristic significantly and consistently outperforms pure deep reinforcement learning algorithms in minimizing total costs. Moreover, it overcomes several inherent limitations of multi-stage stochastic programming models, thus underscoring its potential advantages in addressing complex supply chain scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.