Abstract

<p>The Triassic-Jurassic Boundary marks one of the largest mass extinction events of the Phanerozoic. Across the boundary, a rise in carbon-dioxide levels and global temperatures are hypothesized to have driven significant environmental changes inducing a major floral turnover, causing vegetation structure, composition and leaf morphology to alter, and inferred wildfire activity to increase.</p><p>An example of these changes can be observed at the Astartekløft site in East Greenland, where previous work identified a change in flora from broad-leaved conifer dominated to an assemblage dominated by narrow leaved conifers, coeval with a five-fold increase in charcoal abundances.</p><p>Variations in carbon-dioxide concentrations have been shown to be capable of influencing leaf chemistry. It could therefore be hypothesized that carbon-dioxide-driven climate changes across the Triassic-Jurassic boundary may have been capable of not only inducing changes in leaf morphological fuel properties, but also variations in biochemical properties that are both capable of altering wildfire behaviour.</p><p>In order to assess this, we selected three plant species that have ancient evolutionary origins and correspond to the dominant leaf morphotypes of litter-forming vegetation observed at the Astartekløft site across the Triassic-Jurassic boundary. We grew these species in current ambient and high carbon-dioxide (Triassic-Jurassic boundary) atmospheric conditions and analysed variations in the chemistry of the leaves, using gas chromatography mass spectrometry, and assessed aspects of their flammability using micro-calorimetry. These data were used to inform a fire behaviour model to produce estimates of variations in fire behaviour, such as surface fire spread, flame length and fireline intensity across the Triassic-Jurassic boundary at Astartekløft.</p><p>Our results reveal a change in leaf chemistry that is expressed as a suppression of volatile content in the three species grown under elevated carbon-dioxide concentrations, compared to those grown under ambient conditions. By accounting for these variations in a fire behaviour model, we estimate that fire behaviour was more extreme prior to the increase in carbon-dioxide across the boundary, suggesting a switch from a period of infrequent but intense fast-moving surface fires during the Triassic, to a period of frequent but low intensity and slow spreading fires during the earliest Jurassic. Our results indicate that that increases in carbon-dioxide concentrations may have impacted leaf chemistry and thus flammability, and may therefore have played an interesting role in determining fire behaviour characteristics during this marked period of Earth’s past.  </p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call