Abstract

Fire behaviour models are used to assess the potential characteristics of wildland fires such as rates of spread, fireline intensity and flame length. These calculations help support fire management strategies while keeping fireline personnel safe. Live fuel moisture is an important component of fire behaviour models but the sensitivity of existing models to live fuel moisture has not been thoroughly evaluated. The Rothermel surface fire spread model was used to estimate key surface fire behaviour values over a range of live fuel moistures for all 53 standard fuel models. Fire behaviour characteristics are shown to be highly sensitive to live fuel moisture but the response is fuel model dependent. In many cases, small changes in live fuel moisture elicit drastic changes in predicted fire behaviour. These large changes are a result of a combination of the model-calculated live fuel moisture of extinction, the effective wind speed limit and the dynamic load transfer function of some of the fuel models tested. Surface fire spread model sensitivity to live fuel moisture changes is discussed in the context of predicted fire fighter safety zone area because the area of a predicted safety zone may increase by an order of magnitude for a 10% decrease in live fuel moisture depending on the fuel model chosen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.