Abstract

Spatial data mining (SDM) is searching important relationships and characteristics that can clearly exist in spatial databases. This content aims to compare object clustering algorithms for spatial data mining, before identifying the most efficient algorithm. To this end, this paper compare k-means, Partionning Around Medoids (PAM) and Clustering Large Applications based on RANdomized Search (CLARANS) algorithms based on computing time. Experimental results indicate that, CLARANS is very efficient and effective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.