Abstract

Principal component analysis (PCA) is based feature reduction that reduces the correlation of features. In this research, a novel approach is proposed by applying the PCA technique on various morphologies of red blood cells (RBCs). According to hematologists, this method successfully classified 40 different types of abnormal RBCs. The classification of RBCs into various distinct subtypes using three machine learning algorithms is important in clinical and laboratory tests for detecting blood diseases. The most common abnormal RBCs are considered as anemic. The RBC features are sufficient to identify the type of anemia and the disease that caused it. Therefore, we found that several features extracted from RBCs in the blood smear images are not significant for classification when observed independently but are significant when combined with other features. The number of feature vectors is reduced from 271 to 8 as time resuming in training and accuracy percentage increased to 98%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.