Abstract

BackgroundDespite aggressive local and regional therapy, triple-negative breast cancer (TNBC) is characterized by an increased risk of locoregional recurrence. RNA-sequencing data has identified a large number of circRNAs in primary breast cancers, but the role of specific circRNAs in regulating the radiosensitivity of TNBC is not fully understood. This research aimed to investigate the function of circNCOR1 in the radiosensitivity of TNBC. MethodsCircRNA high-throughput sequencing was conducted on two breast cancer MDA-MB-231 and BT549 cell lines after 6 Gy radiation. The relationship between circNCOR1, hsa-miR-638, and CDK2 was determined by RNA immunoprecipitation (RIP), FISH and luciferase assays. The proliferation and apoptosis of breast cancer cells were measured by CCK8, flow cytometry, colony formation assays, and western blot. ResultsDifferential expression of circRNAs was closely related to the proliferation of breast cancer cells after irradiation. Overexpression of circNCOR1 facilitated the proliferation of MDA-MB-231 and BT549 cells and impaired the radiosensitivity of breast cancer cells. Additionally, circNCOR1 acted as a sponge for hsa-miR-638 to regulate the downstream target protein CDK2. Overexpression of hsa-miR-638 promoted apoptosis of breast cancer cells, while overexpression of CDK2 alleviated apoptosis and increased proliferation and clonogenicity. In vivo, overexpression of circNCOR1 partially reversed radiation-induced loosening of tumor structures and enhanced tumor cell proliferation. ConclusionOur results demonstrated that circNCOR1 bounds to hsa-miR-638 and targets CDK2, thereby regulating the radiosensitivity of TNBC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.