Abstract
Graphs are seen as an excellent place to start the design of a non-natural product for total chemical synthesis. In the design process, the vertices of the graph are replaced by a chemical “radical” to create a molecular graph. Classical examples of this are platonic caged hydrocarbons that arise from CH replacements for the vertices of a platonic polyhedron. In the present context of carbon-rich aromatic structures, we demonstrate how benzene-ring replacement can lead to larger targets as well as a greater variety of theoretically interesting molecules. In honor of the first chemist to think of benzene as a group element, we call this replacement process the Loschmidt replacement.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have