Abstract

The recent experimental observation of topological magnon insulator states in a superconducting circuit chain marks a breakthrough for topological physics with qubits, in which a dimerized qubit chain has been realized. Here, we extend such a dimer lattice to superlattice with arbitrary number of qubits in each unit cell in superconducting circuits, which exhibits rich topological properties. Specifically, by considering a quadrimeric superlattice, we show that the topological invariant (winding number) can be effectively characterized by the dynamics of the single-excitation quantum state through time-dependent quantities. Moreover, we explore the appearance and detection of the topological protected edge states in such a multiband qubit system. Finally, we also demonstrate the stable Bloch-like-oscillation of multiple interface states induced by the interference of them. Our proposal can be readily realized in experiment and may pave the way towards the investigation of topological quantum phases and topologically protected quantum information processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call