Abstract

Recent developments in topological photonics have shown that the introduction of disorders can yield the innovative and striking transport phenomena. Here, we theoretically investigate topological one-way edge states in radius-fluctuated photonic Chern topological insulators (PCTIs), which are composed of two-dimensional gyromagnetic photonic crystals with cylinder site fixed but with cylinder radius fluctuated. We use a fluctuation index to characterize the degree of radius fluctuation, employ two empirical parameters to inspect the evolution of topological one-way edge states, and verify the stability of topological one-way edge states by calculating massive samples with various random numbers. We find that as the radius-fluctuation strength increases, there arises a competition between topological one-way edge state, Anderson localization state and trivial bulk state. We reveal that the Anderson localization state appears far more easily in the radius-fluctuation PCTI with even a weak strength compared with the position-perturbed PCTI with a strong randomness. We also demonstrate that the topological one-way edge states are protected against a strong fluctuation much larger than the fabrication errors in practical experiments. Our results show that the PCTIs consisting of gyromagnetic photonic crystals have a high-tolerance for the material and sample fabrication errors, and this would provide a deeper understanding of fundamental topology physics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call