Abstract

Epoxy resins are widely utilized as high performance thermosetting resins for many industrial applications but characterized by a relatively low toughness. Electron beam (EB) curing of polymer resins has a number of advantages over conventional thermal curing, such as shorter curing time, low energy consumption, low cure temperature, dimensional stability, reduced manufacturing cost. In the present work liquid carboxyl-terminated butadiene acrylonitrile (CTBN) copolymers containing 8% acrylonitrile is added at different contents to improve the toughness of diglycidyl ether of bisphenol A (DGEBA) epoxy resins using triarylsulfonium hexafluoroanimonate as a photointiator. The EB irradiation was conducted 5 kGy to 250 kGy in nitrogen. The physics properties of CTBN modified epoxy resins were examined by determine gel content, DMA (dynamic mechanical analysis), UTM (Instron model 4443), SEM (scanning electron microscopy).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.