Abstract
Three approaches were employed to improve the flow and sandwich bonding properties of a nylon-carrier supported film adhesive based on carboxyl terminated butadiene acrylonitrile (CTBN)-modified novolac epoxy resin. These included the addition of a commercial acrylate flow modifier, replacement of novolac epoxy partly with solid diglycidyl ether of bisphenol A (DGEBA) resins, and replacement of CTBN partly with an epoxy functional acrylate terpolymer (EPOBAN). Adhesive properties such as lap shear strength (LSS), T-peel strength (TPS) and flatwise tensile strength (FTS) on honeycomb core bonded sandwich specimens were evaluated using aluminium adherends. The addition of the flow modifier in low concentrations enhanced the flexibility of the system and resulted in a marginal increase in LSS, TPS and FTS. Replacing novolac epoxy partly with solid DGEBA resulted in a less brittle system with enhanced LSS and TPS, but with reduced FTS due to the decreased flow characteristics. A substantial increase in FTS was observed when CTBN was partly replaced with EPOBAN. The introduction of EPOBAN resulted in good flow and fillet properties and the optimum FTS was obtained for the composition based on 25/75 CTBN/EPOBAN ratio. Mechanical properties of selected systems were also studied in addition to adhesive properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.