Abstract

To better understand the isotope variations on a short time scale, this study focused on a long-term rainfall event with light precipitation (June 26-27) and a short-term one with heavy precipitation (July 28) in Lanzhou City in the summer of 2019. Combined with HYSPLIT model, samples collected during a continuous precipitation event every 10 min and 30 min were analyzed to explore the characteristics and mechanism of stable hydrogen and oxygen isotopes in precipitation. The results indicate that the effect of sub-cloud secondary evaporation makes the slope of the sequential meteoric water line (SMWL) smaller at the beginning of the rainfall event. Most of the continuous sampling points are distributed above the global meteoric water line (GMWL) and local meteoric water line (LMWL). Moreover, the deuterium excess is larger than the local average annual deuterium (8.13), indicating that the samples have experienced moisture recycling to a certain extent. During two consecutive days (June 26-27) of rainfall, the variations in oxygen isotope δ18O did not follow the effect of precipitation amount; the precipitation δ18O of the first day was "L" shaped, and it fluctuated the next day. On July 28, δ18O steadily decreased, and the range of δ18O exceeded 9‰. On June 26, the moisture transport path was short at the height of 500 m and on June 27 local evaporation was the main pathway. On July 28, with a relatively stable air mass, the moisture source of the entire precipitation event did not change significantly, neither did the isotope value. Therefore, for a single precipitation event on a short time scale, the difference in moisture sources is one of the reasons for isotope variations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call