Abstract

The local meteoric water line (LMWL) reflects the relationship between stable oxygen and hydrogen isotopes in precipitation, and is usually calculated using an ordinary least squares regression (OLSR). When event-based data are used to calculate a LMWL, the differences in precipitation amount of samples are not considered using OLSR, which in turn may influence the representativeness of the LMWL for local hydrology. Small rain events occur widely in arid Central Asia (annual mean precipitation <150 mm), and where smaller precipitation has lower deuterium excess, this results in LMWLs with slopes and intercepts lower than the global average. Based on an observation network of isotopes in precipitation across the Tianshan Mountains in arid Central Asia, LMWLs for 23 stations are calculated from event-based data from 2012 to 2013 (n = 978), using ordinary least squares, reduced major axis and major axis regressions and their precipitation-weighted counterparts. For the northern slope and mountainous areas, the LMWL slope and intercept are close to the Global Meteoric Water Line (GMWL), but the slope and intercept are lower for the southern slope indicating the greater dominance of sub-cloud evaporation. The effect of moisture recycling in the irrigated areas on the northern slope also can be seen where the LMWL slopes are >8. Using a precipitation weighted regression method with event-based data (especially precipitation-weighted reduced major axis regression, PWRMA) is generally consistent with the OLSR regression using monthly data. However, event-based datasets provide a wider range of values to better constrain the regression than can be achieved using monthly data over a short period, providing a sounder basis for determining LMWLs for relatively short-term sampling campaigns in an arid setting. The use of the PWRMA regression is preferred for determining the LMWL for the Tianshan Mountains, and results in a regional meteoric water line of δD = 7.9δ18O + 10.16.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call