Abstract

Deuterium and oxygen-18 are common environmental tracers in water used to investigate hydrological processes such as evaporation and groundwater recharge, and to trace moisture source. In this study, we collected event precipitation from 01 January 2010 to 28 February 2011 at a site in Changsha, Yangtze River Basin to estimate the influence of moisture source and atmospheric conditions on stable isotope compositions. The local meteoric water line, established as δD = (8.45 ± 0.13) δ18O + (17.7 ± 0.9) (r2 = 0.97, n = 189), had a higher slope and intercept than global meteoric water line. Temperature–δ18O exhibited complex correlations, with positive correlations during Nov.–Apr. superior to during Jun.–Sep., which was attributed to distinctive moisture sources, but vague the overall period; amount effect examined throughout the year. Linear regressions between δ18O and δD value in different precipitation event size classes revealed progressively decreasing slope and intercept values with decreasing precipitation amount and increasing vapour pressure deficit, indicating that small rainfall events (0–5 mm) were subject to secondary evaporation effects during rainwater descent. In contrast, snowfall and heavy precipitation events exhibited high slope and intercepts for the regression equation between δ18O and δD. High concentrations of heavy isotopes were associated with precipitation events sourced from remote westerly air masses, degenerated tropical marine air masses from the Bay of Bengal (BoB), and inland moisture in the pre-monsoon period, as determined from backward trajectories assessed in the HYSPLIT model. Meanwhile, low concentrations of heavy isotopes were found to correspond with remote maritime moisture from BoB, the South China Sea, and the west Pacific at three different air pressures in summer monsoon and post-monsoon using HYSPLIT and records of typhoon paths. These findings suggest that stable isotope compositions in precipitation events are closely associated with the meteorological conditions and respond sensitively to moisture source in subtropical monsoon climates. Copyright © 2013 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.