Abstract
The growing usage of glucocorticoids for a variety of diseases raises concerns since these drugs, including the anti-inflammatory dexamethasone (DEX), are frequently found in the environment. The impact of DEX was evaluated on mussels Mytilus galloprovincialis (Lamarck, 1819) by exposure to environmental concentrations (C1: 4ng/L; C2: 40ng/L; C3: 400ng/L; C4: 2000 ng/L), and sampling at 3 (T3), 6 (T6), and 12 (T12) days. A multi-biomarker approach was applied on gills, involved in gas exchange, feed filtering, and osmoregulation. A dose- and time-dependent uptake of DEX was recorded, besides haemocyte infiltration, increased neutral and acid mucopolysaccharides, and a general pro-oxidant effect witnessed by lipid peroxidation and altered antioxidant system. Metabolomics revealed rise in protein turnover and energy demand by fluctuations in free amino acids (alanine, glycine) and energy-related metabolites (succinate, ATP/ADP). It is necessary to reduce DEX dosage from the environment by recovery strategies and effective eco-pharmacovigilance programs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have