Abstract

Resistive switching behavior in Graphene oxide (GO) is well studied, however, the various mechanisms responsible for this phenomenon are still under extensive debate. We present repeatable bipolar resistive switching in GO thin films sandwiched between two insulating polymer PVDF (Polyvinylidene Fluoride) grown on conducting indium tin oxide (ITO) covered glass substrate. The device heterostructure (Al/PVDF/GO/PVDF/ITO) showed bipolar resistance states switching between low resistance state (LRS) to high resistance state (HRS) with a large ON/OFF ratio of 103 and resistance retention potential up to 104 s. In LRS, in the low applied voltage region, ohmic conduction was the main reason for current conduction in devices; however, traps filled/assisted conduction mechanism dominates in the higher voltage region. The PVDF/GO/PVDF heterostructure shows that oxygen vacancies are responsible for the formation of current conducting filaments. The low operating voltage (<3 V) and long-term stability of resistance states make it a promising candidate for possible applications as Resistive Random Access Memory (ReRAM) elements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call