Abstract

The particular problem of wave scattering at low grazing angles is of great interest because of its importance for the long-distance propagation of radio waves along the Earth's surface, radar observation of near surface objects, as well as solving many other fundamental and applied problems of remote sensing. One of the main questions is: how do the scattering amplitude and specific cross section behave for extremely small grazing angles? We consider the process of wave scattering by a statistically rough surface with the Neumann boundary condition. This model corresponds to sound scattering from a perfectly ‘hard’ surface (for example, the interface between air and the sea surface) or ‘vertically’ polarized electromagnetic waves scattered by a perfectly conducting one-dimensional (i.e. cylindrical) surface when the magnetic field vector is directed along the generating line of this cylindrical surface. We assume that the surface roughness is sufficiently small (in the sense of the Rayleigh parameter) and the surface is rigorously statistically homogeneous and therefore, infinite. We confine ourselves only to the first-order approximation of small perturbation theory and therefore consider every act of wave scattering in the Born approximation when the Bragg scattering process takes place. Only one resonant Fourier component of surface roughness is responsible for the scattering in a given direction. However, we take into account the attenuation of incident and scattered waves due to the multiple scattering processes on the path ‘before’ and ‘after’ a scattering event in a given direction. Also we consider every one of these multiple scattering events only in the Born approximation. The main result we have obtained is that for small grazing angles the scattering cross section of the diffuse component decreases as the second power of the grazing angles with respect to the incident and scattered directions, and as the fourth power of the grazing angle for the backscattering (radar) situation. Generalizing our results from plane-wave scattering to finite beams allows us to obtain the criterion on the beamwidth. For sufficiently narrow beams the multiple scattering processes do not play any role because of a short ‘interaction path’, and only single Bragg scattering determines the scattering amplitude (which does not tend to zero for small grazing angles). However, for sufficiently wide beams the result obtained for infinite plane waves becomes valid: due to the above-mentioned multiple scattering processes, the scattering amplitude tends to zero for small grazing angles. Consequently, the behaviour of the scattering cross section for small grazing angles depends on the radiation pattern width of the transmitting and receiving antennae: for sufficiently wide beams the scattering cross section decreases to zero at small grazing angles, but for narrow beams it tends to the finite non-zero value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call