Abstract

In conventional approaches to the homogenization of random particulate composites, both the distribution and size of the component phase particles are often inadequately taken into account. Commonly, the spatial distributions are characterized by volume fraction alone, while the electromagnetic response of each component particle is represented as a vanishingly small depolarization volume. The strong-permittivity-fluctuation theory (SPFT) provides an alternative approach to homogenization wherein a comprehensive description of distributional statistics of the component phases is accommodated. The bilocally-approximated SPFT is presented here for the anisotropic homogenized composite which arises from component phases comprising ellipsoidal particles. The distribution of the component phases is characterized by a two-point correlation function and its associated correlation length. Each component phase particle is represented as an ellipsoidal depolarization region of nonzero volume. The effects of depolarization volume and correlation length are investigated through considering representative numerical examples. It is demonstrated that both the spatial extent of the component phase particles and their spatial distributions are important factors in estimating coherent scattering losses of the macroscopic field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call