Abstract
In this paper, we study the effects of turbulent atmosphere on the degree of polarization of a partially coherent electromagnetic beam, which propagates through it. The beam is described by a 2⊗2 cross–spectral density matrix and is assumed to be generated by a planar, secondary, electromagnetic Gaussian Schell–model source. The analysis is based on a recently formulated unified theory of coherence and polarization and on the extended Huygens–Fresnel principle. We study the behaviour of the degree of polarization in the intermediate zone, i.e. in the region of space where coherence properties of the beam and the atmospheric turbulence are competing. We illustrate the analysis by numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.