Abstract

The atomic structure of characteristic defects (Mg-rich hexagonal pyramids and truncated pyramids) in GaN:Mg thin films grown with Ga polarity was determined at atomic resolution by reconstruction of the scattered electron wave in a transmission electron microscope. Small cavities within the defects have inside walls covered by GaN of reverse polarity. We propose that lateral overgrowth of the cavities restores matrix polarity on the defect base. From matrix to defect, exchange of Ga and N sublattices leads to a 0.6+/-0.2 A displacement of Ga sublattices. We observe a [1100]/3 shift from matrix AB stacking to BC stacking for the entire pyramid. Electron energy loss spectroscopy detected changes in N edge and presence of oxygen on the defect walls. Our results explain commonly observed decrease of acceptor concentration in heavily doped GaN:Mg.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.