Abstract
Phase-change materials (PCMs) are widely used in the thermal management of electronic devices by effectively lowering the hot end temperature and increasing the energy conversion efficiency. In this article, numerical studies were performed to understand how temperature instability during the periodic utilization of electronic devices affects the heat-dissipation effectiveness of a phase-change material heat sink embedded in an electronic device. Firstly, three amplitudes of 10 °C, 15 °C, and 20 °C for fixed periods of time, namely, 10 min, 20 min, and 40 min, respectively, were performed to investigate the specific effect of amplitude on the PCM melting rate. Next, the amplitude was fixed, and the impact of the period on heat sink performance was evaluated. The results indicate that under the 40 min time period, the averaged melting rate of PCMs with amplitudes of 20 °C, 15 °C, and 10 °C reaches the highest at 19 min, which saves 14 min, 10 min, and 8 min, respectively, compared with the constant input of the same melting rate. At a fixed amplitude of 20 °C, the PCM with a period of 40 min, 20 min, and 10 min has the highest averaged melting rate at 6 min, 11 min, and 19 min, saving the heat dissipation time of 3 min, 8 min, and 14 min, respectively. Overall, it was observed that under identical amplitude conditions, the peak melting rate remains consistent, with longer periods resulting in a longer promotion of melting. On the other hand, under similar conditions, larger amplitude values result in faster melting rates. This is attributed to the fact that the period increases the heat flux output by extending the temperature rise, while the amplitude affects the heat flux by adjusting the temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.