Abstract

This study aimed to assess reporting quality of machine learning (ML) algorithms in the head and neck oncology literature using the TRIPOD-AI criteria. A comprehensive search was conducted using PubMed, Scopus, Embase, and Cochrane Database of Systematic Reviews, incorporating search terms related to "artificial intelligence," "machine learning," "deep learning," "neural network," and various head and neck neoplasms. Two independent reviewers analyzed each published study for adherence to the 65-point TRIPOD-AI criteria. Items were classified as "Yes," "No," or "NA" for each publication. The proportion of studies satisfying each TRIPOD-AI criterion was calculated. Additionally, the evidence level for each study was evaluated independently by two reviewers using the Oxford Centre for Evidence-Based Medicine (OCEBM) Levels of Evidence. Discrepancies were reconciled through discussion until consensus was reached. The study highlights the need for improvements in ML algorithm reporting in head and neck oncology. This includes more comprehensive descriptions of datasets, standardization of model performance reporting, and increased sharing of ML models, data, and code with the research community. Adoption of TRIPOD-AI is necessary for achieving standardized ML research reporting in head and neck oncology. Current reporting of ML algorithms hinders clinical application, reproducibility, and understanding of the data used for model training. To overcome these limitations and improve patient and clinician trust, ML developers should provide open access to models, code, and source data, fostering iterative progress through community critique, thus enhancing model accuracy and mitigating biases. NA Laryngoscope, 2024.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.