Abstract

SummaryMachine learning models are increasingly adopted for facilitating clinical decision-making. However, recent research has shown that machine learning techniques may result in potential biases when making decisions for people in different subgroups, which can lead to detrimental effects on the health and well-being of specific demographic groups such as vulnerable ethnic minorities. This problem, termed algorithmic bias, has been extensively studied in theoretical machine learning recently. However, the impact of algorithmic bias on medicine and methods to mitigate this bias remain topics of active discussion. This paper presents a comprehensive review of algorithmic fairness in the context of computational medicine, which aims at improving medicine with computational approaches. Specifically, we overview the different types of algorithmic bias, fairness quantification metrics, and bias mitigation methods, and summarize popular software libraries and tools for bias evaluation and mitigation, with the goal of providing reference and insights to researchers and practitioners in computational medicine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.