Abstract

AbstractUnderstanding the mechanisms related to the variations in the rainfall structure of tropical cyclones (TCs) is crucial in improving forecasting systems of TC rainfall and its impact. Using satellite precipitation and reanalysis data, we examined the influence of along-track large-scale environmental conditions on inner-core rainfall strength (RS) and total rainfall area (RA) for Atlantic TCs during the TC season (July–November) from 1998 to 2019. Factor analysis revealed three major factors associated with variations in RS and RA: large-scale low and high pressure systems [factor 1 (F1)]; environmental flows, sea surface temperature, and humidity [factor 2 (F2)]; and maximum wind speed of TCs [factor 3 (F3)]. Results from our study indicate that RS increases with an increase in the inherent primary circulation of TCs (i.e., F3) but is less affected by large-scale environmental conditions (i.e., F1 and F2), whereas RA is primarily influenced by large-scale low and high pressure systems (i.e., F1) over the entire North Atlantic and partially influenced by environmental flows, sea surface temperature, humidity, and maximum wind speed (i.e., F2 and F3). A multivariable regression model based on the three factors accounted for the variations of RS and RA across the entire basin. In addition, regional distributions of mean RS and RA from the model significantly resembled those from observations. Therefore, our study suggests that large-scale environmental conditions over the North Atlantic Ocean are important predictors for TC rainfall forecasts, particularly with regard to RA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.