Abstract

Climate change due to greenhouse gases has fueled more intense tropical cyclones (TCs) globally. However, the characteristics rainfall strength (RS) and rainfall area (RA) of TCs and their future changes in regional scales are not yet fully understood. Here, using ultra-high-resolution coupled model simulations, we investigate the dominant factors which control rainfall characteristics of landfalling TCs in the North Indian Ocean (NIO) and western-North Pacific (WNP) and their future change in responses to doubling and quadrupling of atmospheric CO2 concentrations. In the NIO, RS increases more than RA when CO2 rises, but the WNP shows the opposite behavior. We demonstrate that RS is highly related to the lifetime maximum intensity, landfall intensity, and latent heat flux (LHFLX), while RA depends mainly on LHFLX, relative humidity at 600 hPa, and vertical wind shear over the WNP. Our results suggest the need to establish regional-scale adaptation strategies for future changes in landfalling TCs rainfall.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.