Abstract

High Photovoltaic (PV) and Electric Vehicle (EV) Charging Penetration challenges the grid’s Low-Voltage (LV) Distribution Network’s stability due to voltage variations and the overloading of feeders. This research paper investigates the potential of combined PV and Electric Vehicle (EV) charging integration within LV DN, using a representative DN in Malta as a case study. The European Union (EU) has set forth objectives and guidelines that suggest a high likelihood of Distributed Networks (DNs) incorporating a significant number of Photovoltaic Systems (PVs), resulting in overvoltage occurrences, as well as a substantial number of Electric Vehicles (EVs), which may charge in an erratic manner, leading to undervoltage and overloading events. A distribution network (DN) may experience unfavorable situations concurrently due to the simultaneous occurrence of photovoltaic (PV) generation and electric vehicle (EV) charging, particularly in residential case studies. Effectively employing either dispersed or centralized storage is a viable approach to tackle these issues. However, this strategy may defer the requirement for expensive DN investments. The study showcases the extent of automated mitigation attained in the urban zones of Malta. The data presented primarily comprises empirical measurements obtained at the onset of the LV feeder.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call