Abstract
An advanced enhanced oil recovery (EOR) method was investigated, employing a surfactant–polymer (SP) system in combination with a viscosity reducer for application in a heavy oil reservoir within the Haiwaihe Block, Liaohe Oilfield, in China. Significant advantages were observed through the combination of LPS-3 (an anionic surfactant) and OAB (a betaine surfactant) in reducing interfacial tension and enhancing emulsion stability, with the optimal results achieved at the ratio of 9:1. The BRH-325 polymer was found to exhibit superior viscosity enhancement, temperature resistance, and long-term stability. Graphene nanowedges were utilized as a viscosity reducer, leading to a viscosity reduction in heavy oil of 97.43%, while stability was maintained over a two-hour period. The efficacy of the combined system was validated through core flooding experiments, resulting in a recovery efficiency improvement of up to 32.7%. It is suggested that the integration of viscosity reduction and SP flooding could serve as a promising approach for improving recovery in mature heavy oil reservoirs, supporting a transition toward environmentally sustainable, non-thermal recovery methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have