Abstract
The most difficult aspect of optimizing a wind farm is creating an accurate wind farm model, especially if the farm is connected to the grid. The inconsistency and unpredictability of wind speeds exacerbates this issue. When dealing with wind farms, it is possible that the reactive power addition capabilities of individual wind turbines are insufficient to meet network requirements. This is due to cable losses and line losses between the wind farm and PCC. This study employs a doubly fed induction generator (DFIG) and a Static Synchronous Compensator (STATCOM) compensator to keep the output voltage amplitude more constant. Using two PI controller loops, the STATCOM will generate reactive (capacitive) power if the DFIG voltage is lower. The STATCOM will then absorb reactive (inductive) electricity if the DFIG system voltage is greater. STATCOM's ability to regulate the flow of reactive power can increase the network's stability. By optimizing the network's reactive power, the power factor is increased and stabilized up to 0.99. In addition, the system's harmonics never exceed the 5% limit specified by the IEEE 519-1992 standard.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.