Abstract

Improving maize ( Zea mays L.) grain yield and agronomic properties are major goals for corn breeders in northern Europe. In order to facilitate field grain yield determination we measured corn grain moisture content with near infrared (NIR) spectroscopy directly on a harvesting machine. NIR spectroscopy, in combination with harvesting, significantly improved quality and speed of yield determination within the very narrow harvest time window. Moisture calibrations were developed with 2117 samples from the 2001 to 2003 crop seasons using six diode array spectrometers mounted on combines. These models were derived from databases containing spectra from all instruments. Spectrometer-specific calibrations cannot be used to predict samples measured on other instruments of the same type. Standard error of cross-validation ( SECV) and coefficient of determination ( R2) were 0.56 and 0.99%, respectively. Moisture standard errors of prediction ( SEPs) for the six instruments, using varying independent sample sets from the 2004 harvest, ranged between 0.59% and 0.99% with R2 values between 0.92 to 0.98. The six instruments produced the same dry matter predictions on a common sample set as indicated by high R2 and low biases among them, hence there was no need to apply specific standardisation algorithms. Moisture NIR spectroscopy determinations were significantly more precise than those obtained using the reference method. Analysis of variance revealed low least significant differences and high heritabilities. High precision and heritability demonstrate successful implementation of on-combine NIR spectroscopy for routine dry matter (yield) measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call