Abstract

According to a forecast, global energy demand is expected to increase by 56% from 2010 to 2040 (EIA, 2013). The nuclear power plant construction market is also growing with sharper competition. In nuclear power plant construction, scheduling is one of the most important functions due to its large size and complexity. Therefore, it is crucial to incorporate the ‘distinct characteristics of construction commodities and the complex characteristics of scheduling techniques’ (Jung and Woo, 2004) when selecting appropriate schedule control methods for nuclear power plant construction. However, among various types of construction scheduling techniques, the traditional critical path method (CPM) has been used most frequently in real-world practice. In this context, the purpose of this paper is to examine the viability and effectiveness of linear scheduling method (LSM) applications for specific areas in nuclear power plant construction. In order to identify the criteria for selecting scheduling techniques, the characteristics of CPM and LSM were compared and analyzed first through a literature review. Distinct characteristics of nuclear power plant construction were then explored by using a case project in order to develop a methodology to select effective areas of LSM application to nuclear power plant construction. Finally, promising areas for actual LSM application are suggested based on the proposed evaluation criteria and the case project. Findings and practical implications are discussed for further implementation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call