Abstract

This study investigated whether nitroxide radical (4-amino-TEMPOL)–containing nanoparticles (RNPs; antioxidant nanomedicine) can prevent neurovascular unit impairment caused by reactive oxygen species (ROS) after cerebral ischemia-reperfusion.C57BL/6J mice underwent transient middle cerebral artery occlusion (tMCAO). The mice were randomly divided and administered intra-arterial RNPs injection (9 mg/kg, 7 μM/kg), edaravone (3 mg/kg, 17 μM/kg), or phosphate-buffered saline (control group). Survival rate and neurological score were evaluated 24 h post-injection. RNPs distribution was determined using immunofluorescence staining and blood–brain barrier (BBB) disruption using Evans blue extravasation assay. Effect of RNPs and edaravone on microglia polarization into microglia M1 and M2 was evaluated. We also determined multiple ROS-scavenging activities in brain homogenates of RNPs- and edaravone-treated animals using an electron spin resonance-based spin-trapping method.Compared with edaravone, RNPs significantly improved the survival rate and neurological deficit, inhibited BBB disruption and supported polarization of microglia into M2 microglia. RNPs were localized in endothelial cells, the perivascular space, neuronal cell cytoplasm, astrocytes, and microglia. Scavenging capacities of hydroxyl, alkoxyl, and peroxyl radicals were significantly higher in the RNPs-treated group.RNPs show promising results as a future neuroprotective nanomedicine approach for cerebral ischemia-reperfusion injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.