Abstract

Blood-brain barrier (BBB) leakage plays a key role in cerebral ischemia-reperfusion injury. It is quite necessary to further explore the characteristic and mechanism of BBB leakage during stroke. We induced a focal cerebral ischemia model by transient middle cerebral artery occlusion in male rats for defining the time course of BBB permeability within 120h following reperfusion and evaluate the specific role of tight junction (TJ) associated proteins claudin-5, occludin, and ZO-1 as well as protein kinase C delta (PKCδ) pathway in BBB leakage induced by reperfusion injury. We verified a bimodal increase in the permeability of the BBB following focal ischemia by Evans blue assay. Two peaks of BBB permeability appeared at 3h and 72h of reperfusion after 2h focal ischemia, respectively. The leak at the endothelial cell was represented at the level of transmission electron microscopy. TTC staining results showed increased infarct size with time after cerebral ischemia reperfusion. The mRNA and protein expression levels of these three TJ associated proteins were significantly decreased compared with the sham-operated group within 120h of reperfusion, corresponding to the time-dependent change of the biphasic pattern in BBB leakage. The redistribution of claudin-5, occludin, and ZO-1 in ischemia brain microvascular endothelial cells was observed at the same time points. In addition, Western blot assay revealed PKCδ level was also significantly increased in a similar biphasic pattern to above results within 120h after cerebral ischemia-reperfusion. This study demonstrates the timing of TJ associated proteins claudin-5, occludin, and ZO-1 in light of BBB permeability associated with cerebral ischemia reperfusion, and suggests PKCδ pathway may participate in TJ barrier open and BBB leakage during reperfusion injury in a time-dependent manner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call