Abstract

Microglial polarization plays a critical role in neuroinflammation and may be a potential therapeutic target for ischemic stroke. This study was to explore the role and underlying molecular mechanism of Circular RNA PTP4A2 (circPTP4A2) in microglial polarization after ischemic stroke. C57BL/6J mice underwent transient middle cerebral artery occlusion (tMCAO), while primary mouse microglia and BV2 microglial cells experienced oxygen glucose deprivation/reperfusion (OGD/R) to mimic ischemic conditions. CircPTP4A2 shRNA lentivirus and Colivelin were used to knock down circPTP4A2 and upregulate signal transducer and activator of transcription 3 (STAT3) phosphorylation, respectively. Microglial polarization was assessed using immunofluorescence staining and Western blot. RNA pull-down and RNA binding protein immunoprecipitation (RIP) were applied to detect the binding between circPTP4A2 and STAT3. The levels of circPTP4A2 were significantly increased in plasma and peri-infarct cortex in tMCAO mice. CircPTP4A2 knockdown reduced infarct volume, increased cortical cerebral blood flow (CBF), and attenuated neurological deficits. It also decreased pro-inflammatory factors levels in peri-infarct cortex and plasma, and increased anti-inflammatory factors concentrations 24 h post-stroke. In addition, circPTP4A2 knockdown suppressed M1 microglial polarization and promoted M2 microglial polarization in both tMCAO mice and OGD/R-induced BV2 microglial cells. Moreover, circPTP4A2 knockdown inhibited the phosphorylation of STAT3 induced by oxygen-glucose deprivation. In contrast, increased phosphorylation of STAT3 partly counteracted the effects of circPTP4A2 knockdown. RNA pull-down and RIP assays further certified the binding between circPTP4A2 and STAT3. These results revealed regulatory mechanisms of circPTP4A2 that stimulated neuroinflammation by driving STAT3-dependent microglial polarization in ischemic brain injury. CircPTP4A2 knockdown reduced cerebral ischemic injury and promoted microglial M2 polarization, which could be a novel therapeutic target for ischemic stroke.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call