Abstract

BackgroundAlzheimer’s disease (AD) is a progressive neurodegenerative disorder marked by cognitive decline and synaptic dysfunction. Emerging evidence suggests a significant relationship between gut microbiota and brain health, mediated through the gut-brain axis. Alterations in gut microbiota composition may influence AD progression by affecting molecular pathways and miRNA interactions. MethodsWe retrieved and analyzed microarray data from 34 tissue samples of AD patients and controls (GEO accession number GSE110298). Differentially expressed genes (DEGs) with the GCS score package in R, considering a p-value < 0.05 and logFC<-1 and logFC>1 to isolate significant gene clusters. Enrichment analysis of signaling pathways and gene ontology was conducted using Enrichr, KEGG, Panther, DAVID, and shiny GO databases. Protein-protein interactions were visualized with Networkanalyst and CytoScape. Gut microbiota in 200 CE patients was analyzed using next-generation sequencing (NGS) data from gutMDisorder and GMrepo databases. miRNA interactions were evaluated using miEAA, Targetscan, MienTurnet, and miRnet databases. ResultsSignificant reductions in microbial taxa, including Clostridia (LDA score −4.878208), Firmicutes (LDA score −4.817032), and Faecalibacterium (LDA score −4.40714), were observed in AD patients. Pathway analysis highlighted the involvement of Axon guidance, ErbB, and MAPK signaling pathways in AD. Venn diagram analysis identified 619 intersecting genes in brain and gut tissues, emphasizing pathways such as Axon Guidance and Cell Cycle. miRNA analysis revealed important regulatory miRNAs, including hsa-let-7c, hsa-mir-125b-2, and hsa-mir-145, which target key transcription factors involved in AD pathology. ConclusionThe study demonstrates significant dysbiosis in the gut microbiota of AD patients and underscores the potential role of gut microbiota in AD progression through altered signaling pathways and miRNA interactions. These findings highlight the need for further research into microbiota-based interventions as potential therapeutic strategies for AD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.