Abstract

We establish a theoretical correspondence between spin-one antiferromagnetic spinor condensates in an external magnetic field and quantum rotor models in an external potential. We show that the rotor model provides a conceptually clear picture of the possible phases and dynamical regimes of the antiferromagnetic condensate. We also show that this mapping simplifies calculations of the condensate's spectrum and wavefunctions. We use the rotor mapping to describe the different dynamical regimes recently observed in $^{23}$Na condensates. We also suggest a way to experimentally observe quantum mechanical effects (collapse and revival) in spinor condensates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.